xarray.IndexVariable.mean#
- IndexVariable.mean(dim=None, *, skipna=None, **kwargs)[source]#
Reduce this NamedArray’s data by applying
mean
along some dimension(s).- Parameters:
dim (
str
,Iterable
ofHashable
,"..."
orNone
, default:None
) – Name of dimension[s] along which to applymean
. For e.g.dim="x"
ordim=["x", "y"]
. If “…” or None, will reduce over all dimensions.skipna (
bool
orNone
, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) orskipna=True
has not been implemented (object, datetime64 or timedelta64).**kwargs (
Any
) – Additional keyword arguments passed on to the appropriate array function for calculatingmean
on this object’s data. These could include dask-specific kwargs likesplit_every
.
- Returns:
reduced (
NamedArray
) – New NamedArray withmean
applied to its data and the indicated dimension(s) removed
See also
numpy.mean
,dask.array.mean
,Dataset.mean
,DataArray.mean
- Aggregation
User guide on reduction or aggregation operations.
Notes
Non-numeric variables will be removed prior to reducing.
Examples
>>> from xarray.namedarray.core import NamedArray >>> na = NamedArray("x", np.array([1, 2, 3, 0, 2, np.nan])) >>> na <xarray.NamedArray (x: 6)> Size: 48B array([ 1., 2., 3., 0., 2., nan])
>>> na.mean() <xarray.NamedArray ()> Size: 8B array(1.6)
Use
skipna
to control whether NaNs are ignored.>>> na.mean(skipna=False) <xarray.NamedArray ()> Size: 8B array(nan)