.. currentmodule:: xarray .. _comput: ########### Computation ########### The labels associated with :py:class:`~xarray.DataArray` and :py:class:`~xarray.Dataset` objects enables some powerful shortcuts for computation, notably including aggregation and broadcasting by dimension names. Basic array math ================ Arithmetic operations with a single DataArray automatically vectorize (like numpy) over all array values: .. ipython:: python :suppress: import numpy as np import pandas as pd import xarray as xr np.random.seed(123456) .. ipython:: python arr = xr.DataArray( np.random.RandomState(0).randn(2, 3), [("x", ["a", "b"]), ("y", [10, 20, 30])] ) arr - 3 abs(arr) You can also use any of numpy's or scipy's many `ufunc`__ functions directly on a DataArray: __ https://numpy.org/doc/stable/reference/ufuncs.html .. ipython:: python np.sin(arr) Use :py:func:`~xarray.where` to conditionally switch between values: .. ipython:: python xr.where(arr > 0, "positive", "negative") Use `@` to perform matrix multiplication: .. ipython:: python arr @ arr Data arrays also implement many :py:class:`numpy.ndarray` methods: .. ipython:: python arr.round(2) arr.T .. _missing_values: Missing values ============== Xarray objects borrow the :py:meth:`~xarray.DataArray.isnull`, :py:meth:`~xarray.DataArray.notnull`, :py:meth:`~xarray.DataArray.count`, :py:meth:`~xarray.DataArray.dropna`, :py:meth:`~xarray.DataArray.fillna`, :py:meth:`~xarray.DataArray.ffill`, and :py:meth:`~xarray.DataArray.bfill` methods for working with missing data from pandas: .. ipython:: python x = xr.DataArray([0, 1, np.nan, np.nan, 2], dims=["x"]) x.isnull() x.notnull() x.count() x.dropna(dim="x") x.fillna(-1) x.ffill("x") x.bfill("x") Like pandas, xarray uses the float value ``np.nan`` (not-a-number) to represent missing values. Xarray objects also have an :py:meth:`~xarray.DataArray.interpolate_na` method for filling missing values via 1D interpolation. .. ipython:: python x = xr.DataArray( [0, 1, np.nan, np.nan, 2], dims=["x"], coords={"xx": xr.Variable("x", [0, 1, 1.1, 1.9, 3])}, ) x.interpolate_na(dim="x", method="linear", use_coordinate="xx") Note that xarray slightly diverges from the pandas ``interpolate`` syntax by providing the ``use_coordinate`` keyword which facilitates a clear specification of which values to use as the index in the interpolation. Xarray also provides the ``max_gap`` keyword argument to limit the interpolation to data gaps of length ``max_gap`` or smaller. See :py:meth:`~xarray.DataArray.interpolate_na` for more. .. _agg: Aggregation =========== Aggregation methods have been updated to take a `dim` argument instead of `axis`. This allows for very intuitive syntax for aggregation methods that are applied along particular dimension(s): .. ipython:: python arr.sum(dim="x") arr.std(["x", "y"]) arr.min() If you need to figure out the axis number for a dimension yourself (say, for wrapping code designed to work with numpy arrays), you can use the :py:meth:`~xarray.DataArray.get_axis_num` method: .. ipython:: python arr.get_axis_num("y") These operations automatically skip missing values, like in pandas: .. ipython:: python xr.DataArray([1, 2, np.nan, 3]).mean() If desired, you can disable this behavior by invoking the aggregation method with ``skipna=False``. .. _comput.rolling: Rolling window operations ========================= ``DataArray`` objects include a :py:meth:`~xarray.DataArray.rolling` method. This method supports rolling window aggregation: .. ipython:: python arr = xr.DataArray(np.arange(0, 7.5, 0.5).reshape(3, 5), dims=("x", "y")) arr :py:meth:`~xarray.DataArray.rolling` is applied along one dimension using the name of the dimension as a key (e.g. ``y``) and the window size as the value (e.g. ``3``). We get back a ``Rolling`` object: .. ipython:: python arr.rolling(y=3) Aggregation and summary methods can be applied directly to the ``Rolling`` object: .. ipython:: python r = arr.rolling(y=3) r.reduce(np.std) r.mean() Aggregation results are assigned the coordinate at the end of each window by default, but can be centered by passing ``center=True`` when constructing the ``Rolling`` object: .. ipython:: python r = arr.rolling(y=3, center=True) r.mean() As can be seen above, aggregations of windows which overlap the border of the array produce ``nan``\s. Setting ``min_periods`` in the call to ``rolling`` changes the minimum number of observations within the window required to have a value when aggregating: .. ipython:: python r = arr.rolling(y=3, min_periods=2) r.mean() r = arr.rolling(y=3, center=True, min_periods=2) r.mean() From version 0.17, xarray supports multidimensional rolling, .. ipython:: python r = arr.rolling(x=2, y=3, min_periods=2) r.mean() .. tip:: Note that rolling window aggregations are faster and use less memory when bottleneck_ is installed. This only applies to numpy-backed xarray objects with 1d-rolling. .. _bottleneck: https://github.com/pydata/bottleneck We can also manually iterate through ``Rolling`` objects: .. code:: python for label, arr_window in r: # arr_window is a view of x ... .. _comput.rolling_exp: While ``rolling`` provides a simple moving average, ``DataArray`` also supports an exponential moving average with :py:meth:`~xarray.DataArray.rolling_exp`. This is similar to pandas' ``ewm`` method. numbagg_ is required. .. _numbagg: https://github.com/numbagg/numbagg .. code:: python arr.rolling_exp(y=3).mean() The ``rolling_exp`` method takes a ``window_type`` kwarg, which can be ``'alpha'``, ``'com'`` (for ``center-of-mass``), ``'span'``, and ``'halflife'``. The default is ``span``. Finally, the rolling object has a ``construct`` method which returns a view of the original ``DataArray`` with the windowed dimension in the last position. You can use this for more advanced rolling operations such as strided rolling, windowed rolling, convolution, short-time FFT etc. .. ipython:: python # rolling with 2-point stride rolling_da = r.construct(x="x_win", y="y_win", stride=2) rolling_da rolling_da.mean(["x_win", "y_win"], skipna=False) Because the ``DataArray`` given by ``r.construct('window_dim')`` is a view of the original array, it is memory efficient. You can also use ``construct`` to compute a weighted rolling sum: .. ipython:: python weight = xr.DataArray([0.25, 0.5, 0.25], dims=["window"]) arr.rolling(y=3).construct(y="window").dot(weight) .. note:: numpy's Nan-aggregation functions such as ``nansum`` copy the original array. In xarray, we internally use these functions in our aggregation methods (such as ``.sum()``) if ``skipna`` argument is not specified or set to True. This means ``rolling_da.mean('window_dim')`` is memory inefficient. To avoid this, use ``skipna=False`` as the above example. .. _comput.weighted: Weighted array reductions ========================= :py:class:`DataArray` and :py:class:`Dataset` objects include :py:meth:`DataArray.weighted` and :py:meth:`Dataset.weighted` array reduction methods. They currently support weighted ``sum``, ``mean``, ``std``, ``var`` and ``quantile``. .. ipython:: python coords = dict(month=("month", [1, 2, 3])) prec = xr.DataArray([1.1, 1.0, 0.9], dims=("month",), coords=coords) weights = xr.DataArray([31, 28, 31], dims=("month",), coords=coords) Create a weighted object: .. ipython:: python weighted_prec = prec.weighted(weights) weighted_prec Calculate the weighted sum: .. ipython:: python weighted_prec.sum() Calculate the weighted mean: .. ipython:: python weighted_prec.mean(dim="month") Calculate the weighted quantile: .. ipython:: python weighted_prec.quantile(q=0.5, dim="month") The weighted sum corresponds to: .. ipython:: python weighted_sum = (prec * weights).sum() weighted_sum the weighted mean to: .. ipython:: python weighted_mean = weighted_sum / weights.sum() weighted_mean the weighted variance to: .. ipython:: python weighted_var = weighted_prec.sum_of_squares() / weights.sum() weighted_var and the weighted standard deviation to: .. ipython:: python weighted_std = np.sqrt(weighted_var) weighted_std However, the functions also take missing values in the data into account: .. ipython:: python data = xr.DataArray([np.NaN, 2, 4]) weights = xr.DataArray([8, 1, 1]) data.weighted(weights).mean() Using ``(data * weights).sum() / weights.sum()`` would (incorrectly) result in 0.6. If the weights add up to to 0, ``sum`` returns 0: .. ipython:: python data = xr.DataArray([1.0, 1.0]) weights = xr.DataArray([-1.0, 1.0]) data.weighted(weights).sum() and ``mean``, ``std`` and ``var`` return ``NaN``: .. ipython:: python data.weighted(weights).mean() .. note:: ``weights`` must be a :py:class:`DataArray` and cannot contain missing values. Missing values can be replaced manually by ``weights.fillna(0)``. .. _comput.coarsen: Coarsen large arrays ==================== :py:class:`DataArray` and :py:class:`Dataset` objects include a :py:meth:`~xarray.DataArray.coarsen` and :py:meth:`~xarray.Dataset.coarsen` methods. This supports the block aggregation along multiple dimensions, .. ipython:: python x = np.linspace(0, 10, 300) t = pd.date_range("1999-12-15", periods=364) da = xr.DataArray( np.sin(x) * np.cos(np.linspace(0, 1, 364)[:, np.newaxis]), dims=["time", "x"], coords={"time": t, "x": x}, ) da In order to take a block mean for every 7 days along ``time`` dimension and every 2 points along ``x`` dimension, .. ipython:: python da.coarsen(time=7, x=2).mean() :py:meth:`~xarray.DataArray.coarsen` raises an ``ValueError`` if the data length is not a multiple of the corresponding window size. You can choose ``boundary='trim'`` or ``boundary='pad'`` options for trimming the excess entries or padding ``nan`` to insufficient entries, .. ipython:: python da.coarsen(time=30, x=2, boundary="trim").mean() If you want to apply a specific function to coordinate, you can pass the function or method name to ``coord_func`` option, .. ipython:: python da.coarsen(time=7, x=2, coord_func={"time": "min"}).mean() .. _compute.using_coordinates: Computation using Coordinates ============================= Xarray objects have some handy methods for the computation with their coordinates. :py:meth:`~xarray.DataArray.differentiate` computes derivatives by central finite differences using their coordinates, .. ipython:: python a = xr.DataArray([0, 1, 2, 3], dims=["x"], coords=[[0.1, 0.11, 0.2, 0.3]]) a a.differentiate("x") This method can be used also for multidimensional arrays, .. ipython:: python a = xr.DataArray( np.arange(8).reshape(4, 2), dims=["x", "y"], coords={"x": [0.1, 0.11, 0.2, 0.3]} ) a.differentiate("x") :py:meth:`~xarray.DataArray.integrate` computes integration based on trapezoidal rule using their coordinates, .. ipython:: python a.integrate("x") .. note:: These methods are limited to simple cartesian geometry. Differentiation and integration along multidimensional coordinate are not supported. .. _compute.polyfit: Fitting polynomials =================== Xarray objects provide an interface for performing linear or polynomial regressions using the least-squares method. :py:meth:`~xarray.DataArray.polyfit` computes the best fitting coefficients along a given dimension and for a given order, .. ipython:: python x = xr.DataArray(np.arange(10), dims=["x"], name="x") a = xr.DataArray(3 + 4 * x, dims=["x"], coords={"x": x}) out = a.polyfit(dim="x", deg=1, full=True) out The method outputs a dataset containing the coefficients (and more if `full=True`). The inverse operation is done with :py:meth:`~xarray.polyval`, .. ipython:: python xr.polyval(coord=x, coeffs=out.polyfit_coefficients) .. note:: These methods replicate the behaviour of :py:func:`numpy.polyfit` and :py:func:`numpy.polyval`. .. _compute.curvefit: Fitting arbitrary functions =========================== Xarray objects also provide an interface for fitting more complex functions using :py:func:`scipy.optimize.curve_fit`. :py:meth:`~xarray.DataArray.curvefit` accepts user-defined functions and can fit along multiple coordinates. For example, we can fit a relationship between two ``DataArray`` objects, maintaining a unique fit at each spatial coordinate but aggregating over the time dimension: .. ipython:: python def exponential(x, a, xc): return np.exp((x - xc) / a) x = np.arange(-5, 5, 0.1) t = np.arange(-5, 5, 0.1) X, T = np.meshgrid(x, t) Z1 = np.random.uniform(low=-5, high=5, size=X.shape) Z2 = exponential(Z1, 3, X) Z3 = exponential(Z1, 1, -X) ds = xr.Dataset( data_vars=dict( var1=(["t", "x"], Z1), var2=(["t", "x"], Z2), var3=(["t", "x"], Z3) ), coords={"t": t, "x": x}, ) ds[["var2", "var3"]].curvefit( coords=ds.var1, func=exponential, reduce_dims="t", bounds={"a": (0.5, 5), "xc": (-5, 5)}, ) We can also fit multi-dimensional functions, and even use a wrapper function to simultaneously fit a summation of several functions, such as this field containing two gaussian peaks: .. ipython:: python def gaussian_2d(coords, a, xc, yc, xalpha, yalpha): x, y = coords z = a * np.exp( -np.square(x - xc) / 2 / np.square(xalpha) - np.square(y - yc) / 2 / np.square(yalpha) ) return z def multi_peak(coords, *args): z = np.zeros(coords[0].shape) for i in range(len(args) // 5): z += gaussian_2d(coords, *args[i * 5 : i * 5 + 5]) return z x = np.arange(-5, 5, 0.1) y = np.arange(-5, 5, 0.1) X, Y = np.meshgrid(x, y) n_peaks = 2 names = ["a", "xc", "yc", "xalpha", "yalpha"] names = [f"{name}{i}" for i in range(n_peaks) for name in names] Z = gaussian_2d((X, Y), 3, 1, 1, 2, 1) + gaussian_2d((X, Y), 2, -1, -2, 1, 1) Z += np.random.normal(scale=0.1, size=Z.shape) da = xr.DataArray(Z, dims=["y", "x"], coords={"y": y, "x": x}) da.curvefit( coords=["x", "y"], func=multi_peak, param_names=names, kwargs={"maxfev": 10000}, ) .. note:: This method replicates the behavior of :py:func:`scipy.optimize.curve_fit`. .. _compute.broadcasting: Broadcasting by dimension name ============================== ``DataArray`` objects automatically align themselves ("broadcasting" in the numpy parlance) by dimension name instead of axis order. With xarray, you do not need to transpose arrays or insert dimensions of length 1 to get array operations to work, as commonly done in numpy with :py:func:`numpy.reshape` or :py:data:`numpy.newaxis`. This is best illustrated by a few examples. Consider two one-dimensional arrays with different sizes aligned along different dimensions: .. ipython:: python a = xr.DataArray([1, 2], [("x", ["a", "b"])]) a b = xr.DataArray([-1, -2, -3], [("y", [10, 20, 30])]) b With xarray, we can apply binary mathematical operations to these arrays, and their dimensions are expanded automatically: .. ipython:: python a * b Moreover, dimensions are always reordered to the order in which they first appeared: .. ipython:: python c = xr.DataArray(np.arange(6).reshape(3, 2), [b["y"], a["x"]]) c a + c This means, for example, that you always subtract an array from its transpose: .. ipython:: python c - c.T You can explicitly broadcast xarray data structures by using the :py:func:`~xarray.broadcast` function: .. ipython:: python a2, b2 = xr.broadcast(a, b) a2 b2 .. _math automatic alignment: Automatic alignment =================== Xarray enforces alignment between *index* :ref:`coordinates` (that is, coordinates with the same name as a dimension, marked by ``*``) on objects used in binary operations. Similarly to pandas, this alignment is automatic for arithmetic on binary operations. The default result of a binary operation is by the *intersection* (not the union) of coordinate labels: .. ipython:: python arr = xr.DataArray(np.arange(3), [("x", range(3))]) arr + arr[:-1] If coordinate values for a dimension are missing on either argument, all matching dimensions must have the same size: .. ipython:: :verbatim: In [1]: arr + xr.DataArray([1, 2], dims="x") ValueError: arguments without labels along dimension 'x' cannot be aligned because they have different dimension size(s) {2} than the size of the aligned dimension labels: 3 However, one can explicitly change this default automatic alignment type ("inner") via :py:func:`~xarray.set_options()` in context manager: .. ipython:: python with xr.set_options(arithmetic_join="outer"): arr + arr[:1] arr + arr[:1] Before loops or performance critical code, it's a good idea to align arrays explicitly (e.g., by putting them in the same Dataset or using :py:func:`~xarray.align`) to avoid the overhead of repeated alignment with each operation. See :ref:`align and reindex` for more details. .. note:: There is no automatic alignment between arguments when performing in-place arithmetic operations such as ``+=``. You will need to use :ref:`manual alignment`. This ensures in-place arithmetic never needs to modify data types. .. _coordinates math: Coordinates =========== Although index coordinates are aligned, other coordinates are not, and if their values conflict, they will be dropped. This is necessary, for example, because indexing turns 1D coordinates into scalar coordinates: .. ipython:: python arr[0] arr[1] # notice that the scalar coordinate 'x' is silently dropped arr[1] - arr[0] Still, xarray will persist other coordinates in arithmetic, as long as there are no conflicting values: .. ipython:: python # only one argument has the 'x' coordinate arr[0] + 1 # both arguments have the same 'x' coordinate arr[0] - arr[0] Math with datasets ================== Datasets support arithmetic operations by automatically looping over all data variables: .. ipython:: python ds = xr.Dataset( { "x_and_y": (("x", "y"), np.random.randn(3, 5)), "x_only": ("x", np.random.randn(3)), }, coords=arr.coords, ) ds > 0 Datasets support most of the same methods found on data arrays: .. ipython:: python ds.mean(dim="x") abs(ds) Datasets also support NumPy ufuncs (requires NumPy v1.13 or newer), or alternatively you can use :py:meth:`~xarray.Dataset.map` to map a function to each variable in a dataset: .. ipython:: python np.sin(ds) ds.map(np.sin) Datasets also use looping over variables for *broadcasting* in binary arithmetic. You can do arithmetic between any ``DataArray`` and a dataset: .. ipython:: python ds + arr Arithmetic between two datasets matches data variables of the same name: .. ipython:: python ds2 = xr.Dataset({"x_and_y": 0, "x_only": 100}) ds - ds2 Similarly to index based alignment, the result has the intersection of all matching data variables. .. _comput.wrapping-custom: Wrapping custom computation =========================== It doesn't always make sense to do computation directly with xarray objects: - In the inner loop of performance limited code, using xarray can add considerable overhead compared to using NumPy or native Python types. This is particularly true when working with scalars or small arrays (less than ~1e6 elements). Keeping track of labels and ensuring their consistency adds overhead, and xarray's core itself is not especially fast, because it's written in Python rather than a compiled language like C. Also, xarray's high level label-based APIs removes low-level control over how operations are implemented. - Even if speed doesn't matter, it can be important to wrap existing code, or to support alternative interfaces that don't use xarray objects. For these reasons, it is often well-advised to write low-level routines that work with NumPy arrays, and to wrap these routines to work with xarray objects. However, adding support for labels on both :py:class:`~xarray.Dataset` and :py:class:`~xarray.DataArray` can be a bit of a chore. To make this easier, xarray supplies the :py:func:`~xarray.apply_ufunc` helper function, designed for wrapping functions that support broadcasting and vectorization on unlabeled arrays in the style of a NumPy `universal function `_ ("ufunc" for short). ``apply_ufunc`` takes care of everything needed for an idiomatic xarray wrapper, including alignment, broadcasting, looping over ``Dataset`` variables (if needed), and merging of coordinates. In fact, many internal xarray functions/methods are written using ``apply_ufunc``. Simple functions that act independently on each value should work without any additional arguments: .. ipython:: python squared_error = lambda x, y: (x - y) ** 2 arr1 = xr.DataArray([0, 1, 2, 3], dims="x") xr.apply_ufunc(squared_error, arr1, 1) For using more complex operations that consider some array values collectively, it's important to understand the idea of "core dimensions" from NumPy's `generalized ufuncs `_. Core dimensions are defined as dimensions that should *not* be broadcast over. Usually, they correspond to the fundamental dimensions over which an operation is defined, e.g., the summed axis in ``np.sum``. A good clue that core dimensions are needed is the presence of an ``axis`` argument on the corresponding NumPy function. With ``apply_ufunc``, core dimensions are recognized by name, and then moved to the last dimension of any input arguments before applying the given function. This means that for functions that accept an ``axis`` argument, you usually need to set ``axis=-1``. As an example, here is how we would wrap :py:func:`numpy.linalg.norm` to calculate the vector norm: .. code-block:: python def vector_norm(x, dim, ord=None): return xr.apply_ufunc( np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1} ) .. ipython:: python :suppress: def vector_norm(x, dim, ord=None): return xr.apply_ufunc( np.linalg.norm, x, input_core_dims=[[dim]], kwargs={"ord": ord, "axis": -1} ) .. ipython:: python vector_norm(arr1, dim="x") Because ``apply_ufunc`` follows a standard convention for ufuncs, it plays nicely with tools for building vectorized functions, like :py:func:`numpy.broadcast_arrays` and :py:class:`numpy.vectorize`. For high performance needs, consider using Numba's :doc:`vectorize and guvectorize `. In addition to wrapping functions, ``apply_ufunc`` can automatically parallelize many functions when using dask by setting ``dask='parallelized'``. See :ref:`dask.automatic-parallelization` for details. :py:func:`~xarray.apply_ufunc` also supports some advanced options for controlling alignment of variables and the form of the result. See the docstring for full details and more examples.