xarray.ufuncs.minimum#
- xarray.ufuncs.minimum = <xarray.ufuncs._binary_ufunc object>#
xarray specific variant of
numpy.minimum()
. Handles xarray objects by dispatching to the appropriate function for the underlying array type.Documentation from numpy:
Element-wise minimum of array elements.
Compare two arrays and return a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated.
- Parameters
x1, x2 (array_like) – The arrays holding the elements to be compared. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).out (
ndarray
,None
, ortuple
ofndarray
andNone
, optional) – A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.where (array_like, optional) – This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default
out=None
, locations within it where the condition is False will remain uninitialized.**kwargs – For other keyword-only arguments, see the ufunc docs.
- Returns
y (
ndarray
or scalar) – The minimum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars.
See also
maximum
Element-wise maximum of two arrays, propagates NaNs.
fmin
Element-wise minimum of two arrays, ignores NaNs.
amin
The minimum value of an array along a given axis, propagates NaNs.
nanmin
The minimum value of an array along a given axis, ignores NaNs.
fmax
,amax
,nanmax
Notes
The minimum is equivalent to
np.where(x1 <= x2, x1, x2)
when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting.Examples
>>> np.minimum([2, 3, 4], [1, 5, 2]) array([1, 3, 2])
>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting array([[ 0.5, 0. ], [ 0. , 1. ]])
>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([nan, nan, nan]) >>> np.minimum(-np.inf, 1) -inf