xarray.ufuncs.power#
- xarray.ufuncs.power = <xarray.ufuncs._binary_ufunc object>#
xarray specific variant of
numpy.power()
. Handles xarray objects by dispatching to the appropriate function for the underlying array type.Documentation from numpy:
First array elements raised to powers from second array, element-wise.
Raise each base in x1 to the positionally-corresponding power in x2. x1 and x2 must be broadcastable to the same shape.
An integer type raised to a negative integer power will raise a
ValueError
.Negative values raised to a non-integral value will return
nan
. To get complex results, cast the input to complex, or specify thedtype
to becomplex
(see the example below).- Parameters
x1 (array_like) – The bases.
x2 (array_like) – The exponents. If
x1.shape != x2.shape
, they must be broadcastable to a common shape (which becomes the shape of the output).out (
ndarray
,None
, ortuple
ofndarray
andNone
, optional) – A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.where (array_like, optional) – This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default
out=None
, locations within it where the condition is False will remain uninitialized.**kwargs – For other keyword-only arguments, see the ufunc docs.
- Returns
y (
ndarray
) – The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are scalars.
See also
float_power
power function that promotes integers to float
Examples
Cube each element in an array.
>>> x1 = np.arange(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125])
Raise the bases to different exponents.
>>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.])
The effect of broadcasting.
>>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]])
The
**
operator can be used as a shorthand fornp.power
on ndarrays.>>> x2 = np.array([1, 2, 3, 3, 2, 1]) >>> x1 = np.arange(6) >>> x1 ** x2 array([ 0, 1, 8, 27, 16, 5])
Negative values raised to a non-integral value will result in
nan
(and a warning will be generated).>>> x3 = np.array([-1.0, -4.0]) >>> with np.errstate(invalid='ignore'): ... p = np.power(x3, 1.5) ... >>> p array([nan, nan])
To get complex results, give the argument
dtype=complex
.>>> np.power(x3, 1.5, dtype=complex) array([-1.83697020e-16-1.j, -1.46957616e-15-8.j])