xarray.ufuncs.bitwise_or

Contents

xarray.ufuncs.bitwise_or#

xarray.ufuncs.bitwise_or = <xarray.ufuncs._binary_ufunc object>#

xarray specific variant of numpy.bitwise_or(). Handles xarray objects by dispatching to the appropriate function for the underlying array type.

Documentation from numpy:

Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator |.

Parameters
  • x1, x2 (array_like) – Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

  • out (ndarray, None, or tuple of ndarray and None, optional) – A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

  • where (array_like, optional) – This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.

  • **kwargs – For other keyword-only arguments, see the ufunc docs.

Returns

out (ndarray or scalar) – Result. This is a scalar if both x1 and x2 are scalars.

See also

logical_or, bitwise_and, bitwise_xor

binary_repr

Return the binary representation of the input number as a string.

Examples

The number 13 has the binary representation 00001101. Likewise, 16 is represented by 00010000. The bit-wise OR of 13 and 16 is then 00011101, or 29:

>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'
>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33,  5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33,  6])
>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([  6,   5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([  6,   5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32),
...               np.array([4, 4, 4, 2147483647], dtype=np.int32))
array([         6,          5,        255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
array([ True,  True])

The | operator can be used as a shorthand for np.bitwise_or on ndarrays.

>>> x1 = np.array([2, 5, 255])
>>> x2 = np.array([4, 4, 4])
>>> x1 | x2
array([  6,   5, 255])