xarray.DataArray.interp_like#
- DataArray.interp_like(other, method='linear', assume_sorted=False, kwargs=None)[source]#
Interpolate this object onto the coordinates of another object, filling out of range values with NaN.
- Parameters
other (
Dataset
orDataArray
) – Object with an ‘indexes’ attribute giving a mapping from dimension names to an 1d array-like, which provides coordinates upon which to index the variables in this dataset. Missing values are skipped.method (
{"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima"}
) – Interpolation method to use (see descriptions above).assume_sorted (
bool
, default:False
) – If False, values of coordinates that are interpolated over can be in any order and they are sorted first. If True, interpolated coordinates are assumed to be an array of monotonically increasing values.kwargs (
dict
, optional) – Additional keyword arguments passed to the interpolant.
- Returns
interpolated (
DataArray
) – Another dataarray by interpolating this dataarray’s data along the coordinates of the other object.
Notes
scipy is required.
- If the dataarray has object-type coordinates, reindex is used for these
coordinates instead of the interpolation.
- When interpolating along multiple dimensions with methods linear and nearest,
the process attempts to decompose the interpolation into independent interpolations along one dimension at a time.
- The specific interpolation method and dimensionality determine which
interpolant is used:
- Interpolation along one dimension of 1D data (`method=’linear’`)
Uses
numpy.interp()
, unless fill_value=’extrapolate’ is provided via kwargs.
- Interpolation along one dimension of N-dimensional data (N ≥ 1)
- Methods {“linear”, “nearest”, “zero”, “slinear”, “quadratic”, “cubic”, “quintic”, “polynomial”}
use
scipy.interpolate.interp1d()
, unless conditions permit the use ofnumpy.interp()
(as in the case of method=’linear’ for 1D data).
If method=’polynomial’, the order keyword argument must also be provided.
- Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)
- Depending on the method, the following interpolants from
scipy.interpolate
are used: “pchip”:
scipy.interpolate.PchipInterpolator
“barycentric”:
scipy.interpolate.BarycentricInterpolator
“krogh”:
scipy.interpolate.KroghInterpolator
- “akima” or “makima”:
scipy.interpolate.Akima1dInterpolator
(makima is handled by passing the makima flag).
- “akima” or “makima”:
- Depending on the method, the following interpolants from
- Interpolation along multiple dimensions of multi-dimensional data
- Uses
scipy.interpolate.interpn()
for methods {“linear”, “nearest”, “slinear”, “cubic”, “quintic”, “pchip”}.
- Uses
Examples
>>> data = np.arange(12).reshape(4, 3) >>> da1 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 30, 40], "y": [70, 80, 90]}, ... ) >>> da1 <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90 >>> da2 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 29, 39], "y": [70, 80, 90]}, ... ) >>> da2 <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 32B 10 20 29 39 * y (y) int64 24B 70 80 90
Interpolate the values in the coordinates of the other DataArray with respect to the source’s values:
>>> da2.interp_like(da1) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[0. , 1. , 2. ], [3. , 4. , 5. ], [6.3, 7.3, 8.3], [nan, nan, nan]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90
Could also extrapolate missing values:
>>> da2.interp_like(da1, kwargs={"fill_value": "extrapolate"}) <xarray.DataArray (x: 4, y: 3)> Size: 96B array([[ 0. , 1. , 2. ], [ 3. , 4. , 5. ], [ 6.3, 7.3, 8.3], [ 9.3, 10.3, 11.3]]) Coordinates: * x (x) int64 32B 10 20 30 40 * y (y) int64 24B 70 80 90