xarray.DataArray.isel#
- DataArray.isel(indexers=None, drop=False, missing_dims='raise', **indexers_kwargs)[source]#
Return a new DataArray whose data is given by selecting indexes along the specified dimension(s).
- Parameters
indexers (
dict
, optional) – A dict with keys matching dimensions and values given by integers, slice objects or arrays. indexer can be a integer, slice, array-like or DataArray. If DataArrays are passed as indexers, xarray-style indexing will be carried out. See Indexing and selecting data for the details. One of indexers or indexers_kwargs must be provided.drop (
bool
, default:False
) – Ifdrop=True
, drop coordinates variables indexed by integers instead of making them scalar.missing_dims (
{"raise", "warn", "ignore"}
, default:"raise"
) – What to do if dimensions that should be selected from are not present in the DataArray: - “raise”: raise an exception - “warn”: raise a warning, and ignore the missing dimensions - “ignore”: ignore the missing dimensions**indexers_kwargs (
{dim: indexer, ...}
, optional) – The keyword arguments form ofindexers
.
- Returns
indexed (
xarray.DataArray
)
See also
Dataset.isel DataArray.sel
- Indexing
Tutorial material on indexing with Xarray objects
- Indexing and Selecting Data
Tutorial material on basics of indexing
Examples
>>> da = xr.DataArray(np.arange(25).reshape(5, 5), dims=("x", "y")) >>> da <xarray.DataArray (x: 5, y: 5)> Size: 200B array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24]]) Dimensions without coordinates: x, y
>>> tgt_x = xr.DataArray(np.arange(0, 5), dims="points") >>> tgt_y = xr.DataArray(np.arange(0, 5), dims="points") >>> da = da.isel(x=tgt_x, y=tgt_y) >>> da <xarray.DataArray (points: 5)> Size: 40B array([ 0, 6, 12, 18, 24]) Dimensions without coordinates: points