xarray.core.resample.DatasetResample.count#
- DatasetResample.count(dim=None, *, keep_attrs=None, **kwargs)[source]#
Reduce this Dataset’s data by applying
count
along some dimension(s).- Parameters
dim (
str
,Iterable
ofHashable
,"..."
orNone
, default:None
) – Name of dimension[s] along which to applycount
. For e.g.dim="x"
ordim=["x", "y"]
. If None, will reduce over the Resample dimensions. If “…”, will reduce over all dimensions.keep_attrs (
bool
orNone
, optional) – If True,attrs
will be copied from the original object to the new one. If False, the new object will be returned without attributes.**kwargs (
Any
) – Additional keyword arguments passed on to the appropriate array function for calculatingcount
on this object’s data. These could include dask-specific kwargs likesplit_every
.
- Returns
reduced (
Dataset
) – New Dataset withcount
applied to its data and the indicated dimension(s) removed
See also
pandas.DataFrame.count
,dask.dataframe.DataFrame.count
,Dataset.count
- Resampling and grouped operations
User guide on resampling operations.
Notes
Use the
flox
package to significantly speed up resampling computations, especially with dask arrays. Xarray will use flox by default if installed. Pass flox-specific keyword arguments in**kwargs
. See the flox documentation for more.Examples
>>> da = xr.DataArray( ... np.array([1, 2, 3, 0, 2, np.nan]), ... dims="time", ... coords=dict( ... time=("time", pd.date_range("2001-01-01", freq="ME", periods=6)), ... labels=("time", np.array(["a", "b", "c", "c", "b", "a"])), ... ), ... ) >>> ds = xr.Dataset(dict(da=da)) >>> ds <xarray.Dataset> Size: 120B Dimensions: (time: 6) Coordinates: * time (time) datetime64[ns] 48B 2001-01-31 2001-02-28 ... 2001-06-30 labels (time) <U1 24B 'a' 'b' 'c' 'c' 'b' 'a' Data variables: da (time) float64 48B 1.0 2.0 3.0 0.0 2.0 nan
>>> ds.resample(time="3ME").count() <xarray.Dataset> Size: 48B Dimensions: (time: 3) Coordinates: * time (time) datetime64[ns] 24B 2001-01-31 2001-04-30 2001-07-31 Data variables: da (time) int64 24B 1 3 1