add a DataArray to my dataset as a new variable |
my_dataset[varname] = my_dataArray or Dataset.assign() (see also Dictionary like methods)
|
add variables from other datasets to my dataset |
Dataset.merge()
|
add a new dimension and/or coordinate |
DataArray.expand_dims() , Dataset.expand_dims()
|
add a new coordinate variable |
DataArray.assign_coords()
|
change a data variable to a coordinate variable |
Dataset.set_coords()
|
change the order of dimensions |
DataArray.transpose() , Dataset.transpose()
|
reshape dimensions |
DataArray.stack() , Dataset.stack() , Dataset.coarsen.construct() , DataArray.coarsen.construct()
|
remove a variable from my object |
Dataset.drop_vars() , DataArray.drop_vars()
|
remove dimensions of length 1 or 0 |
DataArray.squeeze() , Dataset.squeeze()
|
remove all variables with a particular dimension |
Dataset.drop_dims()
|
convert non-dimension coordinates to data variables or remove them |
DataArray.reset_coords() , Dataset.reset_coords()
|
rename a variable, dimension or coordinate |
Dataset.rename() , DataArray.rename() , Dataset.rename_vars() , Dataset.rename_dims() ,
|
convert a DataArray to Dataset or vice versa |
DataArray.to_dataset() , Dataset.to_dataarray() , Dataset.to_stacked_array() , DataArray.to_unstacked_dataset()
|
extract variables that have certain attributes |
Dataset.filter_by_attrs()
|
extract the underlying array (e.g. NumPy or Dask arrays) |
DataArray.data
|
convert to and extract the underlying NumPy array |
DataArray.to_numpy
|
convert to a pandas DataFrame |
Dataset.to_dataframe
|
sort values |
Dataset.sortby
|
find out if my xarray object is wrapping a Dask Array |
dask.is_dask_collection()
|
know how much memory my object requires |
DataArray.nbytes , Dataset.nbytes
|
Get axis number for a dimension |
DataArray.get_axis_num()
|
convert a possibly irregularly sampled timeseries to a regularly sampled timeseries |
DataArray.resample() , Dataset.resample() (see Resampling and grouped operations for more)
|
apply a function on all data variables in a Dataset |
Dataset.map()
|
write xarray objects with complex values to a netCDF file |
Dataset.to_netcdf() , DataArray.to_netcdf() specifying engine="h5netcdf" or Dataset.to_netcdf() , DataArray.to_netcdf() specifying engine="netCDF4", auto_complex=True
|
make xarray objects look like other xarray objects |
ones_like() , zeros_like() , full_like() , Dataset.reindex_like() , Dataset.interp_like() , Dataset.broadcast_like() , DataArray.reindex_like() , DataArray.interp_like() , DataArray.broadcast_like()
|
Make sure my datasets have values at the same coordinate locations |
xr.align(dataset_1, dataset_2, join="exact")
|
replace NaNs with other values |
Dataset.fillna() , Dataset.ffill() , Dataset.bfill() , Dataset.interpolate_na() , DataArray.fillna() , DataArray.ffill() , DataArray.bfill() , DataArray.interpolate_na()
|
extract the year, month, day or similar from a DataArray of time values |
obj.dt.month for example where obj is a DataArray containing datetime64 or cftime values. See Datetime components for more.
|
round off time values to a specified frequency |
obj.dt.ceil , obj.dt.floor , obj.dt.round . See Datetime components for more.
|
make a mask that is True where an object contains any of the values in a array |
Dataset.isin() , DataArray.isin()
|
Index using a boolean mask |
Dataset.query() , DataArray.query() , Dataset.where() , DataArray.where()
|
preserve attrs during (most) xarray operations |
xr.set_options(keep_attrs=True)
|