xarray.DataArray.all

Contents

xarray.DataArray.all#

DataArray.all(dim=None, *, keep_attrs=None, **kwargs)[source]#

Reduce this DataArray’s data by applying all along some dimension(s).

Parameters:
  • dim (str, Iterable of Hashable, "..." or None, default: None) – Name of dimension[s] along which to apply all. For e.g. dim="x" or dim=["x", "y"]. If “…” or None, will reduce over all dimensions.

  • keep_attrs (bool or None, optional) – If True, attrs will be copied from the original object to the new one. If False, the new object will be returned without attributes.

  • **kwargs (Any) – Additional keyword arguments passed on to the appropriate array function for calculating all on this object’s data. These could include dask-specific kwargs like split_every.

Returns:

reduced (DataArray) – New DataArray with all applied to its data and the indicated dimension(s) removed

See also

numpy.all, dask.array.all, Dataset.all

Aggregation

User guide on reduction or aggregation operations.

Examples

>>> da = xr.DataArray(
...     np.array([True, True, True, True, True, False], dtype=bool),
...     dims="time",
...     coords=dict(
...         time=("time", pd.date_range("2001-01-01", freq="M", periods=6)),
...         labels=("time", np.array(["a", "b", "c", "c", "b", "a"])),
...     ),
... )
>>> da
<xarray.DataArray (time: 6)>
array([ True,  True,  True,  True,  True, False])
Coordinates:
  * time     (time) datetime64[ns] 2001-01-31 2001-02-28 ... 2001-06-30
    labels   (time) <U1 'a' 'b' 'c' 'c' 'b' 'a'
>>> da.all()
<xarray.DataArray ()>
array(False)